Wind development in England – the challenge

Mike Blanch
Embarking on community wind in England needs careful consideration

- Planning uncertain. Rules requiring high level of community consent that reduced new wind projects to a trickle are due to be relaxed but subject to a consultation. Wait for the result of that!
- Price support mechanisms limited to bidding for a CfD - complex and expensive and even if successful will result in a low price for a small project
- Best sites are ones where:
 - Wind speed high (> 8.0 m/s (?) at 50 m). Appropriate sites limited.
 - Next to high energy use where can supply by direct (private wire). That way energy user benefits from predictable long term prices and wind project from accessing higher prices. Appropriate sites limited, and
 - Can get economies of scale from using large turbines (> 3MW (?)).
- In 2010 where planning policy positive and there was an appeals process:
 - Only about 1 in 12 of sites passing the initial feasibility stage made it to operating wind projects, and
 - At the planning application stage there was an ~50% success rate which includes the 44% of appeals that resulted in applications permitted.
- Development also costly
Onshore Large Wind – The Development Stages > 5 MW

1. Staged Feasibility and Screening
 - Stakeholder Consultation
 - Option to develop if third party

2. Screening / Scoping
 - Environmental surveying
 - Lease if third party
 - Wind Monitoring and Analysis

3. Impact Assessment
 - Mast planning permission
 - Planning Application Appeal – 24 months average from application
 - Final Design
 - Grid connection offer

4. If approved
 - Finance, PPA and Grid Connection Agreed
 - Turbine and BOP Procurement and, Contract negotiations

5. Detailed Civil and Electrical Design
 - Civil Works
 - Turbine Installation
 - Commissioning and Handover
 - Lead time on components and delivery
 - Electrical Works

Operate and Maintain for 20+ years

Typical durations but can be shorter and very much longer

© BVG Associates 2023
Onshore Large Wind work

Site stages in previous slide:

1. Desktop Feasibility (about £1k), Detailed Feasibility and Initial Consultation (about £8k), Initial Public Consultation (about £4k)

2. & 3. Development (about £400k) (60% EIA work, 10% grid)

4. Post consent – contracting & detailed design (about £400k);

5. Build (about £1.3 million / MW for wind), PM work (about £100k)

- Timescale >3.5 years
- Funnel: expect consent for only 1 in 12 sites

- All this favours development of large, windy sites near existing grid by people able to afford the financial risk and can take a portfolio approach so develop a number of site and focus effort on the ones making most progress

- It does not favour the development of smaller community projects by communities

- Lets look at what is involved in developing …
Siting issues

1. Footprint – does renting adjacent land achieve or add to the required space compared to merely the core ‘site’ and its constraint.
2. Wind climate – small issue once windy site chosen
3. Aviation constraints – impact on flight paths, NATS, MOD and Met Office radar
4. Environmental etc designations
5. Location (noise / shadow flicker) proximity to, occupancy of and orientation of Residential properties, Offices, Other buildings with/without windows
7. Turbine rating and tower height (IEC Class)
8. Access – roads suitable to transport large blades and nacelle and space for assembly
9. Proximity to existing grid (cost, various options)
10. Avoidance of surface and subsurface utilities
11. Ground conditions
12. Roads – level of use vs overhang
13. Economics
Turbine impacts to assess in design stage

1. Sound - depends on
 • wind speed and time of day (background noise level)

2. Shadow flicker – degree depends on
 • time of year and direction and strength of sun’s direct irradiance

3. Glare (rare)
 • time of year and direction and strength of sun’s direct irradiance

4. Ground vibration (rare)

5. Ancillary structures – substation (extension of existing), crane hard standing area, access track to road.

6. Modification (temporary) to roads to enable delivery access

7. Temporary construction traffic

8. Servicing traffic (small)

9. Very visible structure

10. Cumulative impact from each additional turbine

11. Avoiding wakes from upwind turbines in the prevailing wind direction – orientate so open to the south-west
1. This document is intended for the sole use of the Client who has entered into a written agreement with BVG Associates Ltd or BVG Associates LLP (jointly referred to as “BVGA”). To the extent permitted by law, BVGA assumes no responsibility whether in contract, tort including without limitation negligence, or otherwise howsoever, to third parties (being persons other than the Client), and BVGA shall not be liable for any loss or damage whatsoever suffered by virtue of any act, omission or default (whether arising by negligence or otherwise) by BVGA or any of its employees, subcontractors or agents. A Circulation Classification permitting the Client to redistribute this document shall not thereby imply that BVGA has any liability to any recipient other than the Client.

1. This document is protected by copyright and may only be reproduced and circulated in accordance with the Circulation Classification and associated conditions stipulated in this document and/or in BVGA’s written agreement with the Client. No part of this document may be disclosed in any public offering memorandum, prospectus or stock exchange listing, circular or announcement without the express and prior written consent of BVGA.

1. Except to the extent that checking or verification of information or data is expressly agreed within the written scope of its services, BVGA shall not be responsible in any way in connection with erroneous information or data provided to it by the Client or any third party, or for the effects of any such erroneous information or data whether or not contained or referred to in this document.